
Advanced Drupal
Front-End Development

About Me
- Andy Blum, Front End Dev @ Lullabot
- Ohio, USA
- Science teacher 2013-2016
- Front End/Drupal developer 2016-present

- Drupal Dev
- Site building
- Custom theming
- Basic module development
- Core contribution (olivero)

- Front-end Dev
- HTML/CSS/JS
- SSG (Jekyll, Gatsby)
- React, Next.js
- Node.js

About Me
@andy-blum (1 hyphen)

● Github
● Drupal.org
● Drupal Slack
● Drupaltwig Slack
● LinkedIn

@andy__blum (2 underscores)

● Twitter

Topics To Be Covered
● Advanced theme setup & configuration like the

Libraries API and Theme Settings
● Utilizing PHP and Drupal’s core & contrib functionality

to enhance your theme
● JavaScript and Drupal Behaviors
● Advanced twig concepts
● Debugging and troubleshooting methods

First: What’s Your Experience?
● Skill Levels

○ Novice -> Intermediate -> Advanced
○ Low -> High

● Skill Domains
○ PHP
○ JavaScript
○ Drupal
○ Twig

Skill Level: PHP

INTERMEDIATE:

I write functions that
manipulate data in some

basic ways

I’ve done a little bit of
object-oriented code

NOVICE:

I’ve never touched PHP
in my life

I can write variables &
navigate arrays/objects

ADVANCED:

I’ve written entire PHP classes

I’ve written entire PHP
applications

Skill Level: JavaScript (Vanilla)

INTERMEDIATE:

I write functions that
manipulate data in some

basic ways

I’ve done a little bit of
object-oriented code

NOVICE:

I’ve never touched JS
in my life

I can write variables &
navigate arrays/objects

ADVANCED:

I’ve written entire JS classes

I’ve written entire JS
applications

Skill Level: Twig

INTERMEDIATE:

I know how to set
variables and use filters

I know how to
manipulate/dig into

array/object variables

NOVICE:

I’ve never touched Twig
in my life

I can write HTML markup
and fill it in with content

ADVANCED:

I can use advanced twig
concepts like macros,

include/embed, etc

I’ve used the above in
coordination with a

component library like
storybook

Skill Level: Drupal (Site Building & Admin)

INTERMEDIATE:

I’ve done some config
like creating content

types, views, etc

I’ve made a basic site like
a blog with a couple

fancy features

NOVICE:

I’ve never touched
Drupal in my life

I’ve logged in and poked
around, updated content,

etc

ADVANCED:

I’ve built several sites on my
own

I’m Dries

But First…
● Source Code

○ github.com/andy-blum/fl-demo

● Tooling
○ VS Code on macOS (with a workspace already prepped!)
○ DDEV (ddev.readthedocs.io)

● Prefer your own setup?
○ That’s fine, but I might not be able to help you do some specific things

● Need Help?
○ Try getting it set up, but there are several of us here if you need help

But First…
● This repository is setup with git tags as checkpoints.

○ Cloning the repository puts you at the end of this presentation
○ git checkout -b my-changes
○ git checkout training-start

● If at any point something goes awry, just create a new feature branch
from the tagged checkpoint

● Please, Demo Gods, let everything go smoothly today

training-start

What I’m Giving You To Start
- Composer-managed Drupal (v9.3.5)
- Drush (v11.0.4)
- DDEV (1.18 or 1.19) 👈 need v19 if you’re not on docker desktop

- PHP 8.0

- Start it up!
- git checkout training-start
- ddev start
- ddev composer install
- ddev drush si demo_umami

Get into developer mode

Configure development services

● Enabling twig debug messages
● Force twig files to re-compile every

time the source code changes

● You can see the documentation for
all services in default.services.yml

debugging-01

/web/sites/development.services.yml

https://git.drupalcode.org/project/drupal/-/blob/9.3.x/sites/default/default.services.yml

Configure local settings

● /web/sites/default/settings.local.php
● Duplicate from example.settings.local.php

● Enable local development services
● Show all error messages
● Disable css/js aggregation
● Disable render cache
● Disable internal page cache
● Disable dynamic page cache

debugging-02

Configure local settings
debugging-02

Configure local settings
debugging-02

Configure local settings
debugging-02

Include our local settings

● /web/sites/default/settings.php
● Include local settings

● Clear cache for all these
changes to take effect

debugging-03

Hints & Help in our rendered markup!
debugging-03

Add PHP Step Debugging

● Add xDebug to DDEV
○ If you’re not using DDEV or VS code

you’re on your own here
● Allows step debugging PHP

● /fl-demo.code-workspace

● Install PHP Debug extension

● xDebug config changed between ddev
1.18 and 1.19

● We’ll skip using this for now

debugging-04

https://marketplace.visualstudio.com/items?itemName=xdebug.php-debug

Add helpful debugging print outs

● Add the devel module
○ ddev composer require drupal/devel
○ ddev drush en devel devel_generate

● Now look at development.services.yml
○ “Composer Scaffold”
○ Drupal issue #3094699
○ Scaffolding docs

● Prevent scaffolding from
Overwriting this file

debugging-05

https://www.drupal.org/project/drupal/issues/3094699
https://www.drupal.org/node/3057099

My Favorite: Kint

● OPTIONAL
○ Add kint as a vardumper
○ With a patch, displays methods & object

iterators

● We’ll skip using this for now

debugging-05

https://gitlab.com/drupalspoons/devel/-/issues/221

Custom Theme Settings

Duplicate core’s umami theme

● We don’t want to modify the core theme -
anytime we update/install with composer our
changes will be overwritten

● /web/core/profiles/demo_umami/themes/umami
● /web/themes/custom/foomami

● I’m making some CSS changes as well that we
will briefly cover but don’t need to do together.

● Just checkout the tagged commit
○ git checkout add-theme

add-theme

Enable our theme!

● Enable the `foomami` theme & set
to default

● Enable `claro` theme & make it the
admin theme (optional)

● Disable `umami` (optional)

● Only changes I made to the theme
besides renaming
○ Add `core_version_requirement` to

info.yml
○ Consolidate & convert colors to

HSL

Add custom settings to our theme

● http://.../admin/appearance/settings/foomami
○ Starts with just the global settings
○ We can add custom controls here!

● Add theme-settings.php to our theme root
● Add hook_form_FORM_ID_alter function

○ Form_id: system_theme_settings
○ Use my VS Code Extension
○ WTF is a hook?

https://www.drupal.org/docs/8/theming-drupal-8/creating-advanced-theme-settings
https://marketplace.visualstudio.com/items?itemName=andrewdavidblum.drupal-smart-snippets

Hooks: Explained

● Hooks are specific functions
that let us interject
functionality into a program

● Three main types for themes
○ Form Alters
○ Template Preprocesses
○ Theme Suggestions

● We’ll use the first two in this
stage

Hooks: Explained

● Hooks are specific functions
that let us interject
functionality into a program

● Three main types for themes
○ Template Preprocesses
○ Form Alters
○ Theme Suggestions

Hooks: Explained

● Hooks are specific functions
that let us interject
functionality into a program

● Three main types for themes
○ Template Preprocesses
○ Form Alters
○ Theme Suggestions

Hooks: Explained

● Theme hooks only run on the
active theme and its base
theme(s) if there are any,
regardless of how many are
installed

● Module hooks run in all themes
for all installed modules

● Module hooks run first, then
theme hooks

● Hooks run alphabetically
○ Unless we change that

behavior

Back to our theme settings!

hook_form_FORM_ID_alter()

Back to our theme settings!

Back to our theme settings!

What do we have access to?

● Lets find out what $form has in it.

● var_dump($form);
○ Baked into PHP
○ Looks better if you wrap with <pre> tags
○ If you have xDebug running (we don’t yet) it will

also improve the printout
○ A lot of variables we will work with are massive.

Var_dump may easily run out of memory or take
longer than your browser wants to wait on a
request to complete

○ Generally avoid

What do we have access to?

● Lets find out what $form has in it.

● dump($form);
○ Provided from Symfony
○ Arrays & objects are collapsed by

default, making it easy to explore or find
specific information

○ Color coding and types give additional
context to the things you’re looking at

○ Provides a considerable amount of depth
without running out of memory

○ Solid Choice for variable exploration

What do we have access to?

● Lets find out what $form has in it.

● kint($form);
○ Requires kint-php/kint
○ Similar to Symfony’s var dumper
○ Also provides type information
○ With the patch we added we can also

see objects’ available methods
○ Buttons on right side add functionality

■ Copy access path
■ Open in new window

○ Can run out of memory, though
configurable to limit depth

My personal favorite

What do we have access to?

Let’s mimic what’s already there

● We need to add Form Render Elements
○ Descriptive documentation
○ Full List of all Elements

● Let’s start by making a collapsible panel
to wrap all of the form fields we’ll add.
○ Details element
○ Call it “Foomami Specific Settings”
○ Open by default

https://www.drupal.org/docs/drupal-apis/form-api/form-render-elements
https://api.drupal.org/api/drupal/elements

Creating a wrapper for our fields
theme-settings-01

What fields do we need?

● I converted CSS colors from hex to
HSL to allow site admins to customize
colors
○ 3 colors/color families

■ primary, secondary, accent
○ 3 values per color

■ hue, saturation, lightness

● How could we set this up?
○ Pause for audience participation

How Olivero is doing this

● Add a plain text field
○ Should accept a full-length hexcode
○ Should validate the input
○ Highly accessible, but not great if you

don’t have a color in mind

● Add a color input next to that
○ Add some event listeners to keep

inputs in sync
○ Provides sighted users a better

experience to experiment with colors

● Convert the hex value to HSL in PHP

Create a new text input field
theme-settings-02

Let’s improve the UX!

● We have a text input

● We want to enhance it with JS & CSS
○ How? This isn’t our theme

● We can create a library in our theme and
attach it to this form
○ Create new JS file

■ foomami/js/components/fields/color.js
○ Create new CSS file

■ foomami/css/components/fields/color.css
○ Define new libraries using these files

■ See image
○ Attach to our theme-settings forms

theme-settings-03

Quick Libraries Sidebar

● Drupal’s library system is the way we incorporate CSS and JS

● A whole training could be done just on the libraries API

● There are lots of options that you can put on each resource

● Libraries can be extended or overridden in the info.yml file
○ Libraries-override lets you modify, replace, or remove individual resources or entire libraries
○ Libraries-extend lets you add additional resources onto other libraries

● Examples in Olivero
○ Override: replace core layout builder library with olivero-specific library
○ Extend: Add additional styles & scripts when the drupal.message library is used

https://www.drupal.org/node/2216195#libraries-options-details
https://www.drupal.org/node/2216195#override-extend

Let’s improve the UX!

● Now we can inject a color input via JS
○ Use Drupal Behaviors

● What does this end up rendering?

theme-settings-04

How can we prevent multiple runs?

● Drupal behaviors can and often will run multiple
times per page
○ Behaviors are run/attached every time Drupal

updates the page
○ Ajax calls, BigPipe will cause this most often

● We can use the drupal.once library
○ Adds a class to elements once they’ve been

selected, allowing us to avoid picking them again

● We can use `context`
○ context is equal to `document` on the first run
○ context is the DOM segment that’s injected after

that

Limit selection with `context`

Limit selection with `once`
theme-settings-05

Wire it up
theme-settings-06

● Try it out!
○ Change the text input
○ Change the color input

■ Changes should sync
○ Save the form

■ Changes should persist

Don’t forget the other colors!

● We still need a field for:
○ Secondary color
○ Accent color

● We’ll need to modify our
theme-settings
○ Make a template variable
○ Customize each individual field

● We’ll need to generalize our JS/CSS

Add our other fields
theme-settings-07

Add our other fields
theme-settings-07

Generalize our JS/CSS
theme-settings-07

Use the values from the form

● So far we’ve only stored the values. Now we have
to use them too!

● We need to convert hex values to HSL

● We need to inject those values into the page so
the CSS can use the overwritten variable values

Converting HEX to HSL

● Convert Hex -> RGB
○ Convert trio of base-16 values to base-10

● Convert RGB -> HSL
○ Math

● https://bit.ly/3HRsu8O
○ It’ll be easier to just copy & paste
○ Or you can update with git

theme-settings-08

https://bit.ly/3HRsu8O

Converting HEX to HSL

Use the values from the form

Use the values from the form

Back to the hooks!

Back to the hooks!

Back to the hooks

● We want to add in our H, S, & L values into the
`style` attribute on our `html` tag

● We know we want to modify `html_attributes`

● How do we add our stuff?
● How do we avoid breaking this for other modules?
● Lets debug it!

Back to the hooks

● kint($variables)

● html_attributes is an Attribute object
○ Has `protected` property `storage`

● What methods do we have access to?
○ Kint’s methods tab
○ api.drupal.org
○ The PHP file the class comes from

Kint’s methods tab

api.drupal.org

api.drupal.org

api.drupal.org

The source file

Back to the hooks
theme-settings-09

Back to the hooks

Menus

Create a new menu with depth

● Using devel_generate
○ /admin/config/development/generate

● 1 new menu
● 25 links
● Max length: 5
● Max depth: 4
● Max width: 4

● Note the name of the menu created

Place your new menu

● Place new menu block directly above the main
navigation menu block

● Set menu depth to unlimited
● Set expand all to true

Place your new menu

Place your new menu

Make our template file

● Create a new file with your suggested template name

● foomami/templates/components/navigation/menu…html.twig
○ This follows the pattern that already exists
○ Drupal will find the template anywhere inside the templates folder

● Contents copied from the stable9 theme
○ It’s the most bare-bones theme, so it’s where I like to get my

starting point when I make a new template
○ web/core/themes/stable9/templates/navigation/menu.html.twig

Make our template file
● We define a new macro

○ Function
○ Typically recursive

● We import macros from `_self`
○ This file

● Alias all macros to `menus`

● Call the menu_links macro with
starting conditions

● The template I added to the
repo will almost certainly not
work for your site. It’s reliant
on the devel-menu id that’s
auto-generated.

menu-01

Make our template file
● No difference between ul elements

○ We can simplify

menu-02

Lessons learned

● Attributes is mutable
○ We’ll need to remove any changes

we make before kicking off the
recursion

● To make this easier, we’ll put
classes in an array and make them
conditional with ternary null
coalescing operators

Ternary Operator

● Useful when you want to use a
boolean value as a switch

● Can be used within:
○ print statements {{ }}
○ Set statements {% set %}

Null Coalescing Operator

● Useful when you want to use a value
with one or more fallbacks

● Can be used within:
○ print statements {{ }}
○ Set statements {% set %}

Make our template file
● Create classes array
● Add dynamic classes
● Add conditional classes

● Remove classes from attributes
object before cycling deeper

menu-03

Lets polish it up!

Lets polish it up!

Why isn’t it showing up?
● We created a library and

registered our stylesheet

● We didn’t attach it yet!

● Let’s go ahead and remove the
old menu block while we’re here

menu-04

Template Customization

The last hook type

● We’ve already seen form alters and preprocesses

● The last hook type we have the a theme suggestion alter
○ Provides new template names that we can use to customize

markup based on content or configuration

● The ideal use of these is when entities with identical data
structures need different markup based on their content or
config.

The last hook type

● We’ve already seen form alters and
preprocesses

● The last hook type we have the a theme
suggestion alter
○ Provides new template names that we can

use to customize markup based on content or
configuration

● The ideal use of these is when entities with
identical data structures need different
markup based on their content or config.

● Example: Fremont Insurance Company
○ fmic.com
○ Gravity Works

FMIC Paragraph Templates

FMIC Paragraph Templates

FMIC Paragraph Templates

Search Results

● Site header search combines all node
types

● Articles & Recipes are difficult to tell
apart

● Let’s make some new template
suggestions so we can visually
differentiate for our users

● What kind of content/config differences
can we leverage?

Search Results
templates-01

Search Results

Search Results

● Obvious choice is ‘type’
○ Note that it’s capitalized. This is the

human-readable name. Do not use!

● Node object provides access to all field
values and entity properties
○ We can use stored field values directly
○ We can also modify them if we want!

Search Results

● We’ll use:
○ Drupal-controlled information

■ Node bundle
■ Node ID
■ Node Age

○ Author-controlled information
■ Field values
■ Published status
■ Author info

● This is obviously overkill. Only make the
suggestions you’ll actually need.

Search Results
templates-02

● Can append or prepend
○ Later in the array = higher priority

● `type-article` overrides `all others`

● search-result.html.twig will always be
the fallback.
○ Will fallback to base theme if present,

else `stable`

Search Results
templates-03

● We don’t have to use the node’s values
directly.

● We can build templates around logic
based on node’s values

Search Results
templates-03

● We don’t have to use the node’s values
directly.

● We can build templates around logic
based on node’s values

Search Results

● Field values can be a little trickier to get

● Remember that we’re working with two
different node types.
○ Fields on one type might not exist on

the other.

● Remember that fields can be removed
and data structures can be renamed.
○ Be sure your checks are what you really

want.

● Field values often require more than
one method/property combo to acquire.

❌

✅

Search Results
templates-04

● Fields always store a list.
○ Even if you only allow one item
○ Even if there’s nothing in it
○ It’s always always a list.

● Before you attempt to use a
field value:
○ Check if the entity has the field
○ Check if the list is empty
○ Try to access your list item
○ Make sure you have a value

that matches your
expectations
■ Truthy/Falsey
■ In/Equivalence

Search Results

● There are lots of ways to get
what you want

● $field→getValue()
○ Gives you all items in field list

● $field→get(n)
○ Gives you nth value in list
○ 0-indexed

● $field→first()
○ Gives you first item
○ Same as $field→get(0)

Search Results

● Some fields store ‘useful’ data
○ Lists, strings, numbers, etc

● Some fields store references
○ Taxonomy terms, media items,

files

● You can access the referenced
entity and use it’s info too, just
be careful to build in failure
checks

Search Results
templates-05

Views Templates

● Views templates already have really good patterns in place, but don’t tell you what they
are in the twig debug statements
○ There are issues open to make this happen

● View template base names are always first
○ views-view.html.twig
○ views-view--view-name.html.twig
○ views-view--display-mode.html.twig
○ views-view--view-name--display-mode.html.twig

Let’s Try Step-Debugging

● This is our first good opportunity to attempt using xDebug.

● xDebug lets us peek into our code mid-execution

● I find it to be the most useful when trying to track logic flows.
○ If I want to explore variables/arrays/objects I typically stick to Kint

● To start, enable xDebug in DDEV
○ ddev xdebug enable

● Place a breakpoint where we define $node

Let’s Try Step-Debugging

● Open the “Run and Debug” sidebar in VS Code

● xDebug will pause execution on all “breakpoints”
○ Where we set them
○ PHP notices/warnings/errors/exceptions (if desired)

● Start the VS code debug listener

● Refresh the page

Let’s Try Step-Debugging

Let’s Try Step-Debugging

Let’s Try Step-Debugging

Hard Stuff in Templates

● Twig templates are pretty easy to get started in
○ Mainly just HTML
○ {{ variable }} to print variable
○ Some additional programming with {% set %}, {% if %}, {% for %}
○ The documentation is pretty good

● They can get complex fast when you want to get specific data out of arrays or objects

● So what is twig?
○ It’s “The flexible, fast, and secure template engine for PHP”
○ It renders to PHP similar to what templates looked like in Drupal 7 and prior

https://twig.symfony.com/doc/3.x/

Hard Stuff in Templates

Primary Benefits

● Easier to read and write
○ No more <?php print(‘inline php’); ?>

● More secure
○ We can limit what twig can do
○ No direct database connections in templates
○ Twig print ({{ }}) sanitizes all strings by default

● Highly extensible
○ We can create our own twig filters and functions
○ We can bundle those filters and functions into modules and share it with a community of open

source developers to make everyone’s lives easier

Handy Modules for Twig

● twig_tweak
○ Provides functions that do drupal-specific things

■ {{ drupal_entity('node', 123, 'teaser') }}
■ Cheat sheet with lots of examples

● twig_field_value
○ Useful for getting partial values from fields instead of cutting up `content.field_name` on your

own
○ Also capable of getting raw values from the field, bypassing the field processing that would

normally happen

● Kint (not really a module)
○ You can use kint to dump out twig’s context or individual variables from your template
○ ddev composer require kint-php/kint-twig
○ Generally best to avoid putting more than one kint dump on a page

templates-06

https://www.drupal.org/project/twig_tweak
https://git.drupalcode.org/project/twig_tweak/-/blob/3.x/docs/cheat-sheet.md
https://www.drupal.org/project/twig_field_value

Accessing Data in Twig

● Let’s mimic some of the data finding we did in our theme_suggestion_HOOK_alter
function
○ We won’t be editing these templates beyond just trying to get to the data via Kint()

● Get basic node info (bundle, id)
● Set a variable based on some info
● Get a string out of a field
● Get an entity referenced from a field

● node.html.twig

● Go to an individual recipe page

Get basic node info

● kint(_context|keys)
○ Prints out array of names of all variables we have access to

● kint() or kint(_context)
○ Prints out array of all variables (with contents)

templates-07

Get basic node info

● We can use some methods on objects using dot-notation
○ isPublished(), hasField(), getCreatedTime(), other common methods

● Object.methodName()

templates-08

Set a variable based on info

● For some reason kint won’t print out number values

● Note that we switch types from string to numbers and do math

templates-09

Getting a string out of a field

● content vs. node
○ “content” is the field values after going through field processors
○ “node” has the field values as stored in the database

Getting a string out of a field

● Umami has nodes configured to use layout builder
○ I’ve disabled that to show the differences

● Let’s look at a field that has multiple values like ‘ingredients’

● I’ve also changed the field processor to “link to content”

Getting a string out of a field (contents)

Getting a string out of a field (contents)
❌
✅

templates-10
Getting a string out of a field (contents)

● Accessing array values normally uses dot-notation
○ contents.field_ingredients.0

● Accessing array values can also use bracket-notation
○ contents[‘field_ingredients’][‘0’]

■ Zero can be a string or int here
○ Bracket notation required for keys that start with a #

● Node is an object and the properties are all protected
○ Need to access values through methods or iterator

● Iterator allows access to common values we might want to expose that would otherwise
require complex data traversal
○ node.getIterator()|keys shows all values we can access!
○ See comparison on next slide

● node.getField(‘field_ingredients’) or node.field_ingredients both work!

● Some of the methods we used in php won’t work in twig
○ .first(), for example

Getting a string out of a field (entity)
templates-10

Getting a string out of a field (entity)

Get a referenced entity

● In PHP, you can directly access the referenced entity
○ node→field_media_image→referencedEntities()
○ Not allowed in twig!

● To get access to the referenced entities we have some options
○ Get the target id and use twig_tweak

■ Requires the module (we haven’t installed it here)

○ Create a new variable and pass it into our twig template
■ Requires going back to our preprocess hooks

templates-11

Get a referenced entity
templates-12

public://mediterranean-quiche-umami.jpg

Get a referenced entity

● From here we have a couple options

● Send the URI string to the template and use one of Drupal’s “file_url” twig function
○ Drupal twig filters
○ Drupal twig functions

templates-13

https://www.drupal.org/docs/theming-drupal/twig-in-drupal/filters-modifying-variables-in-twig-templates
https://www.drupal.org/docs/theming-drupal/twig-in-drupal/functions-in-twig-templates

Get a referenced entity

● From here we have a couple options

● Convert the URI to a URL in PHP and then send it to twig

templates-14

Questions/Open Floor

