
Cross-Platform Apps
Powered by Drupal for
Everyone

Alex Borsody - Moonraft a UST Company

Obligatory meme from 2010

● For people familiar with Drupal and working with Drupal’s theme layer (there
are a lot) for those looking to get the most out of their coupled architecture
and also for those who are interested in learning more about decoupled (off
the Drupal island)

● Focused on technologies running in the web browser Chromium/Webkit
(Chrome/Safari).

● PWA is different technologies that come together focused on the web
browser to create native app experience.

● This particular talk is from an architect’s perspective, choosing and
implementing various technologies that come together to make a great PWA.

● This is a survey, any of the slides could be their own talk, there will be code
samples and repositories provided as well as a companion blog post.

Disclaimer

● PWA module as a starting point.

● PWA Builder and getting your into the app
stores.

● Choosing decoupled or standard Drupal theme
layer.

● Everything you need to know about making
your PWA truly feel like native app. (which no
one will talk about right now but Google)

Where are we going?

What is a PWA? What is not a PWA?

PWA - Progressive Web App
Essentially an effort led by Google and Microsoft to

make the web browser a runtime environment on par

with a native app experience. Truly write code once

for Android and iOS, plus get an optimized website for

performance and SEO.

By Definition

● Service worker: Offline functionality

● Web manifest: Add to home screen and icons.

● Security: Must use https (service worker and

session cookies)

PWAs Can Also

● Be discoverable in app stores via TWA or

custom wrapper for iOS

● Have access to native device features

whatwebcando.today

● Web technologies “just work”

Cross-Platform-App
Cross platform App is a general term that means

the app can run on multiple platforms from a

single codebase and so could be a PWA or any of

these other technologies.

● React Native

● Flutter

● Ionic/Cordova/Phonegap

● In general more technologies involved

beyond those familiar with web

developers, more labor intensive.

Potentially more margin for error.

https://whatwebcando.today/

● Offline caching provided by a service worker.

● Manifest + PWA Extras

● Improve lighthouse score, performance and SEO.

Drupal PWA Module 🔗

https://www.drupal.org/project/pwa

Offline caching example in service worker

First Visit

Second Visit

PWA Module Demo

https://broadcast-d8-pwa.pantheonsite.io/node/6

Workbox + PWA Module

Effort made to port the D8 module to Workbox (now done in D7)

● Precaching - Using precache manifest
● Runtime caching strategies - cache first, network first, stale-while-revalidate
● Request routing - Different strategies for different assets and URLS (cache first for images)
● Background sync - Post request fails come back online they retry

https://developers.google.com/web/tools/workbox
https://www.drupal.org/project/issues/pwa?categories=All

Cool… but I want to be
discoverable in the app stores

● The PWA module provides everything you need to run through PWA Builder which will…

○ Create a lightweight .apk/.aap to submit to the Play Store 800kb

○ Wrap your website in WKWebView to submit to the App Store

○ Provides you the original source code to make modifications if you want

TWA, WKWebview and PWA Builder

Demo

Google TWA
in Chrome Browser

iOS Wrapper - WebKit - WKWebView

Functionality possible in custom WKWebView wrapper (GitHub repo to be released)

Mindful of Apple minimal functionality guidelines

i. No bounce
ii. Setting cookie from start_url
iii. Adding biometric to WKWebView (check URL and don’t show on anonymous

pages user/login or user/password)
iv. Adding push to WKWebView iOS workaround with cookies.
v. Associated domain to help with login

vi. Cookie expiration GC and Auto Logout module, extend session.gc_maxlifetime
and session.cookie_lifetime

https://developer.apple.com/app-store/review/guidelines/#minimum-functionality
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://stackoverflow.com/questions/520237/how-do-i-expire-a-php-session-after-30-minutes

Making your Drupal website
“App like”

Decoupled decision
making flowchart

• A fully Decoupled SPA architecture
when done correctly can improve
app-like look and feel through
modern UI/UX enhancements and
lack of page refreshes to load
content - only when done correctly
though is the JSON rendering
actually faster than the coupled
Drupal theme layer rendering +
service worker approach.
Implementation can take more
resources and combination of
skill-sets.

• Fully decoupled can limit Drupal’s
capabilities such as, layout and
display management, content
previews, user interface (UI)
localisation, form display,
accessibility, authentication, security
features such as XSS & CSRF and
performance.

• Dries’ flowchart illustrates the
decision making process.

● UX and frontend dev experience is extremely important to making your website feel like an app and is
accessible to all web developers.

● A lot can be done while only using Drupal’s theme layer to make your web project App-like.

● Keeping mobile/responsive/app-like CSS/HTML/JS updated and compatible with all browsers research
but once adjustments are made, changes really only need to happen occasionally when a major
version of Safari releases or a new iPhone screen size comes out.

● This is about taking Google’s work on PWAs one step further, considering and combining all web
technologies available to make the web look and feel app-like.

● The Chrome team is constantly improving the browser experience, other browsers are following suit.
Project Fugu is the overarching web capabilities project.

Use all web technologies available to feel “app-like”

https://www.chromium.org/teams/web-capabilities-fugu/

● Javascript touch events: disable pinch zoom and swipe gestures
● Viewport meta tag
● CSS:

○ Minify/optimize CSS don’t have flashes of unstyled content,
Lighthouse

○ “App-like” input/font sizes and making sure everything fits in
viewport make it visually look like an app

● Preloaders everywhere!
● HTML attributes

○ autocomplete="username"
○ autocomplete="current-password"
○ autocomplete="one-time-code" WebOTP API
○ input type="tel"

● iPhone specific
○ Status bar on iPhone X plus safe area
○ Meta tags and pwa_extras submodule

● Ajax API (Drupal specific)

●

CSS, HTML, JS and UX Considerations

https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login/?h=app
https://developer.apple.com/documentation/security/password_autofill/enabling_password_autofill_on_an_html_input_element
https://web.dev/web-otp/
https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariHTMLRef/Articles/MetaTags.html
https://pwa-n3sumvi-dabxyipy7hjqc.uk-1.platformsh.site/user/login

