

From Fear
to Freedom

Mastering Drupal Updates
Florida Drupal Camp 2025

● Former Technical Account
Manager en Acquia

● Drupal Architect Architect

● Palcero www.palcera.com

camoa2005@gmail.comCarlos Ospina

http://www.palcera.com
mailto:camoa2005@gmail.com

The Cost of Waiting
01

Technical Debt

The Cost of
Waiting

● One minor version behind: Manageable

● Two minor versions behind: Growing
technical debt

● Multiple minor versions behind:
Development paralysis

● The longer you wait:
○ More complex upgrades
○ Higher security risks
○ Increased development costs

Systematic
Approach

02

Beyond Random Updates

Updates require structure and planning!

● Two distinct phases:

○ Phase 1: Foundation Setup

○ Phase 2: Maintenance Process

● Each phase has specific goals and requirements

● A standard process brings predictability to updates

Composer file maintenance
● No locked packages (constraints)
● Well-maintained patch inventory
● Clean repository management

Think about configuration management strategy!

Laying the Groundwork (Phase 1)

Laying the Groundwork
(Phase 1)

Initial assessment requirements
● Identify version gaps, how behind

we are
● Note custom module and themes

dependencies
● What can cause issues during the

update
● Document API usage (Drupal and

contrib modules APIs)
● Review relevant Drupal and

module change records
● The upgrade status Module

Standard update process:

● Code updates via composer
● Database updates (drush updb)
● Configuration management
● Testing and QA verification

The Update Cycle (Phase 2)

Key requirements:

● Match production code/database
versions

● Follow systematic order (versions)
● Monitor update messages (for possible

configuration changes)
● Export configuration when needed

Updates: A standalone Process

Not part of regular development sprints

Belongs in hotfix cycle

At stable points:

● Requires full release cycle

● Must be deployed to production

● Team synchronization required (local

development):

○ New database copies

○ Updated code baseline

Prevents accidental overwrites of the

update

Updates: A Time Travel Metaphor
● Each version exists in a specific point in time
● Module compatibility follows these timelines
● Multiple versions live simultaneously [Video Clip: 01:10:00]
● Shows practical example of version release date matching

From Process to
Practice

3
How to do the updates

Stable Points
● Clean update completion
● All tests passing
● Can be released [Video Clip:

1:43]

Understanding Update States

Stopping Points
● When issues need resolution
● Custom code compatibility
● Module version conflicts

Managing Update Progress

At each stable point:
● Create database snapshots
● Commit code changes
● Document current state

Allows targeted rollback

Deploying Updates

Updates are standalone processes
At stable points:

● Full release cycle required
● Complete production deployment
● Team synchronization, developers should:

○ Get a new database from prod
○ Rebase the updates code changes

A practical
example

4
Time to do some updates!

Environment configuration [Video Clip: 2:50]
Composer file cleanup:

● Moving from Drupal project to
recommended project

● Handling installer paths
● Managing dependencies correctly

Critical environment requirements:

● Using DDEV or similar tool
● Proper PHP version management
● Running composer inside dev

environment

Setting Up for Success

Handling Update Challenges

Systematic approach to errors:

● Reading composer conflict messages
● Identifying the real issue among multiple

errors
● Solving one problem at a time

Real-world example:

● Identifying version mismatch
● Finding correct version based on dates
● Implementing the fix - Video Clip 27:45

Choosing the Right Versions

Version Release Date Matching technique:

● Finding core version release dates
● Matching module versions to same timeframe
● Understanding version compatibility windows

Workflow:

● Check core release date
● Find compatible module versions
● Verify module compatibility claims

Video Clip 30:45

8.9.20 9.1.14
9.2.9

9.1.15 9.2.10

9.2.21 9.3.16

Best Practices &
Takeaways

Keys to Update Success

Systematic preparation:

● Document all custom code and APIs used
● Maintain clean composer files
● Keep patch inventory updated

Strategic planning:

● Choose appropriate update windows
● Plan for adequate testing time
● Consider business impact

Testing priorities (Critical Path):

● Custom module functionality
● Theme compatibility
● Content workflows
● Integration points

Learning from Experience

Version Release Date Matching technique:

● Finding core version release dates
● Matching module versions to same timeframe
● Understanding version compatibility windows

Workflow:

● Check core release date
● Find compatible module versions
● Verify module compatibility claims

Video Clip 30:45

Tools demonstrated:

● Upgrade Status module

● Version Release Date Matching

● DDEV for environment management

Key takeaways:

● Updates as standalone process

● Importance of systematic approach

● Value of checkpoints and testing

Community resources:

● Drupal.org change records

● Issue queues

● Core announcements

Moving Forward

¿Preguntas?

